Search results

Search for "ion migration" in Full Text gives 6 result(s) in Beilstein Journal of Nanotechnology.

Recent progress in perovskite solar cells: the perovskite layer

  • Xianfeng Dai,
  • Ke Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2020, 11, 51–60, doi:10.3762/bjnano.11.5

Graphical Abstract
  • organic cation, M2+ is a divalent metal, and X− is a halide anion [57]. The overall 2D structure is stabilized via van der Waals interactions. Importantly, the 2D perovskite structure can also be considered as a multiple-quantum-well structure, which obviously suppresses the ion migration that is evident
PDF
Album
Review
Published 06 Jan 2020

Ultrasonication-assisted synthesis of CsPbBr3 and Cs4PbBr6 perovskite nanocrystals and their reversible transformation

  • Longshi Rao,
  • Xinrui Ding,
  • Xuewei Du,
  • Guanwei Liang,
  • Yong Tang,
  • Kairui Tang and
  • Jin Z. Zhang

Beilstein J. Nanotechnol. 2019, 10, 666–676, doi:10.3762/bjnano.10.66

Graphical Abstract
  • by [PbX6]4− octahedra in which the Cs+ ions reside in the periphery of this network [9][10]. These PNCs are prone to structural instabilities and phase transformations involving ion migration and interface hydration [11]. However, this phase and structure versatility has become the great advantage of
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2019

Multimodal noncontact atomic force microscopy and Kelvin probe force microscopy investigations of organolead tribromide perovskite single crystals

  • Yann Almadori,
  • David Moerman,
  • Jaume Llacer Martinez,
  • Philippe Leclère and
  • Benjamin Grévin

Beilstein J. Nanotechnol. 2018, 9, 1695–1704, doi:10.3762/bjnano.9.161

Graphical Abstract
  • accumulate near the crystal surface due to band bending effects. Time-dependent changes of the surface potential occurring under illumination on the scale of a few seconds reveal the existence of slow ion-migration mechanisms. Lastly, photopotential decay at the sub-millisecond time scale related to the
  • . Keywords: carrier lifetime; ion migration; Kelvin probe force microscopy (KPFM); noncontact atomic force microscopy (nc-AFM); organic–inorganic hybrid perovskites; photostriction; single crystals; surface photovoltage (SPV); time-resolved surface photovoltage; Introduction Organic–inorganic hybrid
  • the photocarrier transport on the sole basis of KPFM data. This uncertainty is largely due to the contributions of the ionic species to the surface potential contrasts [6][8][9][10]. Time-resolved measurements have especially shown that intra-grain ion-migration mechanisms [9] can significantly impact
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Correlative electrochemical strain and scanning electron microscopy for local characterization of the solid state electrolyte Li1.3Al0.3Ti1.7(PO4)3

  • Nino Schön,
  • Deniz Cihan Gunduz,
  • Shicheng Yu,
  • Hermann Tempel,
  • Roland Schierholz and
  • Florian Hausen

Beilstein J. Nanotechnol. 2018, 9, 1564–1572, doi:10.3762/bjnano.9.148

Graphical Abstract
  • area (typically in the range of 1 cm2). Hence, only averaged values are obtained whilst locally the ion mobility can still be inhomogeneous [11]. Translating local ion migration into global conductivity is part of ongoing research. First approaches for small-scale impedance measurements have been
  • -ion mobility in Li0.33La0.56TiO3 using scanning electron microscopy (SEM) with electron backscatter diffraction (EBSD) and electrochemical strain microscopy (ESM) [21]. The authors correlate variations in the Li-ion mobility detected by ESM with limitations in the Li-ion migration pathway. ESM is a
  • surface, causing a strain of the material according to Vegard’s Law [25]. In the case of a solid state electrolyte, with its inherently low electronic conductivity, it remains arguable if the ESM amplitude signal is predominantly caused by ion migration. Very recently, Lushta et al. [28] presented ESM
PDF
Album
Full Research Paper
Published 28 May 2018

Magnesium batteries: Current state of the art, issues and future perspectives

  • Rana Mohtadi and
  • Fuminori Mizuno

Beilstein J. Nanotechnol. 2014, 5, 1291–1311, doi:10.3762/bjnano.5.143

Graphical Abstract
  • mobility. This was attributed to the strong coulombic interactions with BH4− resulting from the small cage size. They proposed that increasing the cage size, by partial substitution of BH4− with the larger AlH4−, may enable magnesium ion migration, however, this was not experimentally demonstrated. Another
PDF
Album
Review
Published 18 Aug 2014

Parallel- and serial-contact electrochemical metallization of monolayer nanopatterns: A versatile synthetic tool en route to bottom-up assembly of electric nanocircuits

  • Jonathan Berson,
  • Assaf Zeira,
  • Rivka Maoz and
  • Jacob Sagiv

Beilstein J. Nanotechnol. 2012, 3, 134–143, doi:10.3762/bjnano.3.14

Graphical Abstract
  • –solution interface by ion migration to the electrode rather than by electron transfer to hydrated ions in solution. Keywords: AFM (SFM); bipolar electrochemistry; electrochemical metal deposition; monolayer patterning; nanolithography; self-assembled organosilane monolayers; Introduction The quest for a
PDF
Album
Supp Info
Letter
Published 16 Feb 2012
Other Beilstein-Institut Open Science Activities